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ABSTRACT
Image harmonization is a critical task in computer vision, which
aims to adjust the foreground to make it compatible with the back-
ground. Recent works mainly focus on using global transformations
(i.e., normalization and color curve rendering) to achieve visual con-
sistency. However, these models ignore local visual consistency and
their huge model sizes limit their harmonization ability on edge
devices. In this paper, we propose a hierarchical dynamic network
(HDNet) to adapt features from local to global view for better fea-
ture transformation in efficient image harmonization. Inspired by
the success of various dynamic models, local dynamic (LD) module
and mask-aware global dynamic (MGD) module are proposed in
this paper. Specifically, LD matches local representations between
the foreground and background regions based on semantic similar-
ities, then adaptively adjust every foreground local representation
according to the appearance of its 𝐾-nearest neighbor background
regions. In this way, LD can produce more realistic images at a
more fine-grained level, and simultaneously enjoy the character-
istic of semantic alignment. The MGD effectively applies distinct
convolution to the foreground and background, learning the repre-
sentations of foreground and background regions as well as their
correlations to the global harmonization, facilitating local visual
consistency for the images much more efficiently. Experimental
results demonstrate that the proposed HDNet significantly reduces
the total model parameters by more than 80% compared to previ-
ous methods, while still attaining state-of-the-art performance on
the popular iHarmony4 dataset. Notably, the HDNet achieves a 4%
improvement in PSNR and a 19% reduction in MSE compared to the
prior state-of-the-art methods. Additionally, we introduced a light-
weight version of HDNet, i.e., HDNet-lite, which has only 0.65MB
parameters, yet it still achieved state-of-the-art performance. Our
code is avaliable in https://github.com/chenhaoxing/HDNet.
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1 INTRODUCTION
In the computer vision community, integrating image patches from
different sources into a cohesive, realistic image is a foundational
technique, as demonstrated in image editing [22, 29] and scene com-
pletion [2, 32]. However, composite images inevitably encounter
inharmonious elements, as foreground and background appear-
ances may have gaps due to varying imaging conditions (e.g., rainy
and sunny, morning and dusk). Consequently, image harmonization,
which strives for visual consistency within the composite image,
constitutes an important and challenging task.

Traditional approaches emphasize the importance of harmoniz-
ing hand-crafted low-level appearance statistics, including color sta-
tistics [28, 36], and gradient information [24]. Nevertheless, these
methods are unsatisfactory in the complex scenarios where the
source image exhibits a significant appearance or semantic gap
with the target.

With the advances in deep learning, more deep neural network-
based methods were proposed [6–8, 18]. Most of them use complex
network structures or training strategies [6, 8] to accomplish image
harmonization tasks. In contrast, color transformation and normal-
ization based models have received extensive attention due to their
simplicity and flexibility [7, 21, 23].

Color transformation based techniques tend to learn an RGB-to-
RGB transformation for image harmonization. For instance, Col-
laborative Dual Transformation (CDTNet)[7] incorporates a low-
resolution generator for pixel-to-pixel transformation, lookup ta-
bles (LUTs) for RGB-to-RGB transformation, and a refinement mod-
ule that takes advantage of both pixel-to-pixel transformation and
RGB-to-RGB transformation.Rencently, Spatial-Separated Curve
Rendering Network (S2CRNet)[21] introduces a curve rendering
module (CRM) that learns and integrates spatial-specific knowledge,
to generate piecewise curve mapping parameters in the foreground
region.

Normalization based methods regard image harmonization as a
background-to-foreground style transfer task. Inspired byAdaIN [16],
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GT Composite Harmonizer Ours

Figure 1: In the top figure, we compare parameter size and
performance between ourmethod and other state-of-the-art
methods. It can be seen that our method has fewer parame-
ters but achieve state-of-the-art results. In the bottomfigure,
our method produces a more photorealistic harmonized re-
sult.

Ling et al. [23] regard image harmonization as a background to fore-
ground style transfer problem and proposed region-aware adaptive
instance normalization (RAIN) which captures the style statistics
information from the background features and applies it to the
foreground. However, as shown in Figure 1, unexpected patterns
still exist and are very severe in some cases.

However, global feature representation and transformation may
not be effective enough for image harmonization tasks. This is
because different regions of an image have distinct colors, tex-
tures, and structural characteristics that cannot be fully captured
by global-level features. Another weakness of the above methods is
that they use fixed statistics for normalization, which significantly
limits their representation ability. Moreover, their model sizes are
too large for edge devices, e.g., mobile phones.

In this paper, we solve the above problems by proposing an effi-
cient dynamic image harmonization network, which hierarchically
adapts the features by two dynamics, i.e., local dynamic module
and mask-aware global dynamic module from local to global view.

To align each foreground local representation with semantically
and appearance matched to the background ones, local dynamic
module first finds 𝐾-nearest neighbor background local represen-
tations. Then, local dynamic module adaptively reconstruct each
foreground local representation by linearly combining it with re-
lated background local representations. Besides, for global feature
learning, mask-aware global dynamic module utilizes distinct convs
for both foreground and background regions. This module enables
the model to acquire adaptive representations for these regions and
effectively capture their correlations.

As shown in Figure 1, the proposed framework is efficient and
effective compared to existing image harmonization models. Our
method achieves higher performance with fewer parameters.

The main contributions can be summarized as follows:
• We propose a novel hierarchical dynamic image harmoniza-
tion network, which adaptively adapt the features from local
to the global view for background and foreground visual
alignments.

• We present a local dynamic module, which finds 𝐾-nearest
neighbor background local representations for each fore-
ground local representation and adjusts the appearance of
each foreground local representation.

• We develop a mask-aware global dynamic module to learn
the representations of foreground and background regions
as well as their correlations for the global harmonization,
leading to better and more efficiently visual consistency.

• Evaluations on image harmonization datasets demonstrate
that our method can achieve state-of-the-art performance
using fewer parameters and lower computational costs.

2 RELATEDWORKS
2.1 Image Harmonization
Traditional image harmonization methods primarily focus on en-
hancing composite images by manipulating low-level appearance
features. These methods include color transformations to achieve a
consistent visual appearance between foreground and background
objects [28, 36], as well as employing multi-scale transformations
and statistical analysis to adjust the overall composition [31]. Al-
though these methods have shown satisfactory results in certain
scenarios, they are limited by their reliance on low-level features
and may struggle to adapt to more complex situations.

In recent years, deep learning-based approaches have emerged
as a powerful alternative for image harmonization, yielding signifi-
cant improvements in performance [6, 7, 12, 13, 18, 21, 33]. Methods
such as DoveNet [8] and BargainNet [6] treat image harmoniza-
tion as a domain translation problem, aiming to enhance domain
consistency between the background and foreground objects. By
leveraging advanced deep learning techniques, these models can
better capture complex relationships and adapt to various scenarios.
Ling et al. [23] introduced the Region-aware Adaptive Instance
Normalization (RAIN) module, an innovative approach that trans-
fers the statistical properties of background features to normalized
foreground features. RAIN has demonstrated promising results, par-
ticularly in terms of its ability to harmonize composite images with
diverse content. Other methods such as S2CRNet and CDTNet have
integrated color transformation into image harmonization tasks,
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Figure 2: Overview of our proposed hierarchical dynamic image harmonization model. The HDNet consists of an Encoder, a
Decoder, a Local Dynamic module and several Mask-aware Global Dynamic modules. Local dynamic module fuses each fore-
ground local representation with its 𝐾-nearest neighbor background local representations to achieve local visual consistency.
Mask-aware global dynamic module aims to learn the representations of foreground and background regions as well as their
correlations from the global view, facilitating global visual consistency for the images much more efficiently.

with their models specifically designed to handle high-resolution
problems.

Nevertheless, a common limitation of many existing methods is
their reliance on global features for transformation, which can be
ineffective for image harmonization tasks that require finer control
over local details. In response to this challenge, our proposed model
adopts a hierarchical approach that progressively adapts features
from a local to a global view. By incorporating both local and global
information, our model is better suited to harmonize images with
varying levels of complexity and detail, ultimately resulting in more
natural and visually coherent composites.

2.2 Style Transfer
Style transfer is a technique that seeks tomodify the stylistic appear-
ance of an image based on given style patterns while maintaining
the original content structure. This process has been the focus of
numerous studies, leading to the development of various methods
that achieve style transfer in different ways.

Huang et al. [16] proposed Adaptive Instance Normalization
(AdaIN), which applies channel-wise mean and variance of style
features to align the distribution of content and style images as
closely as possible. This method allows for effective style trans-
fer while preserving the underlying content structure. Another
approach, Batch-Instance Normalization (Batch-IN)[25], combines
the concepts of batch normalization and instance normalization to
achieve style transfer. Jing et al.[17] introduced dynamic instance
normalization, a technique that generates weights using a learnable
network that takes the style image as input. This method offers a
more flexible and adaptive way to transfer styles. In the Whiten-
ing and Coloring Transform (WCT)[19] method, style transfer is
achieved by first whitening the content representation and subse-
quently coloring it with the style representation. This approach
allows for a more direct manipulation of the content and style
features. The Style Attentional Network (SANet)[26] focuses on
efficiently and flexibly integrating local style patterns based on the
semantic spatial distribution of the content image. This approach
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results in a more coherent and natural-looking style transfer. The
recent RainNet method [23] has demonstrated the effectiveness
of AdaIN [16] in image harmonization tasks. By employing style
transfer techniques, RainNet effectively harmonizes the appearance
of composite images while preserving their content structure. This
approach highlights the potential of style transfer methods in en-
hancing image harmonization and underscores the need for further
research into the interplay between these two fields.

2.3 Dynamics in Computer Vision
Dynamic networks [4, 10, 14, 20, 34] focus on improving the rep-
resentation ability of deep models by adapting model structures
or parameters during inferences. At their core, dynamic models
adaptively apply different weights to parameters or features of
the models based on the input data. This adaptability results in
increased model capacity and representation ability, enabling the
models to better capture complex relationships and patterns in
the data. Attention modules [34] are typical examples of dynamic
networks, where attention maps are calculated to focus on the im-
portant channel or salient region. However, adapting important
individually for each pixel may lose the translation invariance of
the CNN. To solve this problem, Dynamic Region-Aware Convo-
lution [4] is proposed to assign multiple convolutional filters to
different regions separately and share the same filters in each re-
gion. Moreover, Deformable Convolution [3, 10, 37] added an offset
variable to the position of each sampling point in the convolution
kernel, which can realize random sampling nearly points.

3 METHODOLOGY
Our goal is to learn a hierarchical dynamic network for image
harmonization. To achieve this goal, we introduce two sub-modules
for improving the performance of basic networks, i.e., local dynamic
(LD) module and mask-aware global dynamic (MGD) module.

3.1 Overview
Image harmonization aims to adjust the appearance of the fore-
ground object to make it compatible with the background. In a
typical image harmonization task, we are given a foreground image
𝐼𝑓 and a background image 𝐼𝑏 . The foreground mask, denoted by𝑀 ,
indicates the region to be harmonized in the composite image. The
composite image 𝐼𝑐 can be formulated as 𝐼𝑐 = 𝑀 × 𝐼𝑓 + (1 −𝑀) × 𝐼 .
It is worth noting that the background mask can be represented as
𝑀 = 1 −𝑀 . Following [30], we only employ the foreground MSE
loss as our loss function:

L(𝐼 , 𝐼ℎ) =

∑
𝑦,𝑥

| |𝐼𝑦,𝑥 − 𝐼ℎ𝑦,𝑥 | |

Max{𝐴𝑚𝑖𝑛,
∑
𝑦,𝑥

𝑀𝑦,𝑥 } . (1)

𝐴𝑚𝑖𝑛 is a hyperparameter for preventing instability during training
and 𝐼𝑦,𝑥 is the ground truth.

Figure 2 shows the overall framework of our method. Follow-
ing [6, 7, 16, 18], we employ the U-Net structure as our generator𝐺
to harmonize the foreground. The generator𝐺 contains an encoder
𝐸, a decoder 𝐻 , a local dynamic module and several mask-aware
global dynamic modules. The details of our network structure can
be found in supplementary.

3.2 Local Dynamic Module
Considering the significantly variant appearances of different re-
gions of the foreground and the background, recent methods with
global feature alignment may not be effective enough in image har-
monization tasks. Thus a background location that exhibits greater
similarity to the foreground location require more attention, as they
play a crucial role in achieving visually coherent harmonization
results. To achieve this, we propose a local dynamic module that
can adaptive adjust the appearance of each foreground location by
matching and fusing related background locations.

For each image, after passed through the encoder, we can ob-
tain its deep features 𝐹 ∈ R𝐶×𝐻×𝑊 and the corresponding resized
foreground mask𝑀 ∈ R𝐶×𝐻×𝑊 , where 𝐶 , 𝐻 ,𝑊 indicate the num-
ber of channels, height, and width of 𝐹 , respectively. The encoder
feature 𝐹 can be viewed as a set of 𝐻 ×𝑊 𝐶-dimensional local
representations. By utilizing the mapping relationship of the mask,
these local representations can also be divided into foreground local
representations 𝐹𝑓 ∈ R𝐶×𝑁𝑓 and background local representations
𝐹𝑏 ∈ R𝐶×𝑁𝑏 , where 𝑁𝑓 is the number of foreground local represen-
tations, 𝑁𝑏 the number of background local representations and
𝑁𝑓 + 𝑁𝑏 = 𝐻𝑊 . For each foreground local representations, we aim
to find background local representations with similar appearance
and semantics and use these background local representations to
adjust its appearance. We first calculate similarity map 𝑆 as below:

𝑆 (𝑖, 𝑗) = cos(𝐹 (𝑖)
𝑓
, 𝐹

( 𝑗)
𝑏

), (2)

cos(𝐹 (𝑖)
𝑓
, 𝐹

( 𝑗)
𝑏

) =
𝐹
(𝑖)
𝑓

⊤
𝐹
( 𝑗)
𝑏

| |𝐹 (𝑖)
𝑓

| | · | |𝐹 ( 𝑗)
𝑏

| |
, (3)

where 𝑖 ∈ {1, ..., 𝑁𝑓 }, 𝑗 ∈ {1, ..., 𝑁𝑏 }, 𝑆 (𝑖, 𝑗) is the distance between
the 𝑖-th local representation of the foreground image and the 𝑗-
th local representation of background image and 𝑐𝑜𝑠 (·, ·) is the
cosine similarity. For each foreground local representations, we
select its 𝐾-nearest neighbors in background, and fuse these local
representations to one reference representation 𝜙 (𝑖)

𝑟𝑒 𝑓
:

𝜙
(𝑖)
𝑟𝑒 𝑓

=

𝐾∑︁
𝑘=1

𝛼 (𝑘) × 𝐹 (𝑘)
𝑏

, (4)

where
∑𝐾
𝑘=1 𝛼

(𝑘) = 1,𝛼 (𝑘) > 0 and𝑘 = 1, ..., 𝐾 . The𝛼 (𝑘) is obtained
by applying the softmax function to the selected 𝐾 local represen-
tations. Then we use these reference local representations to adap-
tively adjust the corresponding foreground local representations.
We concatenate the foreground and reference local representations
together and fuse them through an adaptive layer:

𝜙 𝑓 𝑢𝑠𝑒 = 𝑔𝜃 (Concat(𝜙𝑟𝑒 𝑓 , 𝐹𝑓 )), (5)

where 𝜙 𝑓 𝑢𝑠𝑒 is the fused local representations and 𝑔𝜃 indicates the
adaptive layer.

3.3 Mask-aware Global Dynamic Module
Recent works [6, 9, 23] show that using attention blocks in the de-
coder helps improve performance. However, it may not be effective
to perform spatial attention on hybrid encoder-decoder features
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Model Param. HAdobe5k HFlickr HCOCO Hday2night Average
MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑

Composite - 345.54 28.16 264.35 28.32 69.37 33.94 109.65 34.01 172.47 31.63
DIH [33] 41.76MB 92.65 32.28 163.38 29.55 51.85 34.69 82.34 34.62 76.77 33.41
S2AM [9] 66.70MB 63.40 33.77 143.45 30.03 41.07 35.47 76.61 34.50 59.67 34.35
iS2AM [30] 66.70MB 21.60 38.28 69.43 33.65 16.15 39.40 40.39 37.87 24.13 38.41
DoveNet [8] 54.76MB 52.32 34.34 133.14 30.21 36.72 35.83 51.95 35.27 52.33 34.76
RainNet [23] 54.75MB 43.35 36.22 110.59 31.64 29.52 37.08 57.40 34.83 40.29 36.12
BargainNet [6] 58.74MB 39.94 35.34 97.32 31.34 24.84 37.03 50.98 35.67 37.82 35.88
Intrinsic [13] 40.86MB 43.02 35.20 105.13 31.34 24.92 37.16 55.53 35.96 38.71 35.90
D-HT [12] 27.00MB 38.53 36.88 74.51 33.13 16.89 38.76 53.01 37.10 30.30 37.55

Harmonizer [18] 21.70MB 21.89 37.64 64.81 33.63 17.34 38.77 33.14 37.56 24.26 37.84
S2CRNet-SN [21] 0.95MB 44.52 35.93 115.46 31.63 28.25 37.65 53.33 36.28 43.20 36.45
S2CRNet-VGG [21] 15.14MB 34.91 36.42 98.73 32.48 23.22 38.48 51.67 36.81 35.58 37.18

SCS-Co [15] - 21.01 38.29 55.83 34.22 13.58 39.88 41.75 37.83 21.33 38.75
DCCF [35] - 23.34 37.75 64.77 33.60 17.07 38.66 55.76 37.40 24.65 37.87
CDTNet [7] - 20.62 38.24 68.61 33.55 16.25 39.15 36.72 37.95 23.75 38.23

SP-IC cycle [1] 66.70MB 18.17 38.91 68.85 33.88 14.82 39.73 41.32 37.90 22.47 38.81

HDNet-lite 0.65MB 24.94 39.16 63.55 34.30 17.33 39.21 32.73 38.36 24.99 38.63
HDNet 10.41MB 13.58 41.17 47.39 35.81 11.60 41.04 31.97 38.85 16.55 40.46

Table 1: Quantitative comparison across four sub-datasets of iHarmony4 [8]. Top two performance are shown in red and blue.
↑means the higher the better, and ↓means the lower the better.

Model Param. 0% ∼5% 5% ∼15% 15%∼100% Average
MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓ MSE↓ fMSE↓

Composite - 28.51 1208.86 119.19 1323.23 577.58 1887.05 172.47 1387.30
DIH [33] 41.76MB 18.92 799.17 64.23 725.86 228.86 768.89 76.77 773.18
S2AM [9] 66.70MB 13.51 509.41 41.79 454.21 137.12 449.81 48.00 481.79

DoveNet [8] 54.76MB 14.03 591.88 44.90 504.42 152.07 505.82 52.36 549.96
RainNet [23] 54.75M 11.66 550.38 32.05 378.69 117.41 389.80 40.29 469.60
iS2AM [30] 66.70MB 6.35 288.19 19.69 226.00 71.68 235.30 24.13 260.22

BargainNet [6] 58.74MB 10.55 450.33 32.13 359.49 109.23 353.84 37.82 405.23
Intrinsic [13] 40.86MB 9.97 441.02 31.51 363.61 110.22 354.84 38.71 400.29

S2CRNet-SN [21] 0.95M 8.42 301.97 29.74 336.24 126.56 405.13 43.21 336.99
S2CRNet-VGG [21] 15.14MB 6.80 239.94 25.37 271.70 103.42 333.96 35.58 274.99
SP-IC cycle [1] 66.70MB 6.08 276.59 18.27 209.56 66.44 216.37 22.47 245.75

HDNet-lite 0.65MB 6.45 289.71 18.70 217.66 76.56 243.58 24.99 260.65
HDNet 10.41MB 4.35 199.56 12.82 150.45 49.18 159.82 16.55 179.49

Table 2: We measure the error of different methods in foreground ratio range based on the whole test set. fMSE indicates the
mean square error of the foreground region.

since pixel-level adaptation is unsuitable for low-level texture fea-
tures.

To learn adaptive representations for harmonious and inharmo-
nious regions, we propose the mask-aware global dynamic module
to predict the adaptive convolutional kernels with the guidance
of the mask. As shown in Figure 2, mask-aware global dynamic
module are incorporated into our networks to better integrate the

local information for modeling the visual coherence. Unlike DR-
conv [4] focusing on the local information, which is unreliable
in the harmonious and inharmonious regions, we learn different
kernels according to the foreground mask. For efficiency, different
groups of filters for foreground and background are applied for
the whole input to get the dynamic features. Then the dynamic
features are multiplied by the mask. Finally, a summation is applied
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Figure 3: Qualitative comparison on samples from the testing dataset of iHarmony4. The yellow border lines indicate the
foreground.

to obtain the final results for the MGD:

𝐹 ′𝑚 = (𝐹𝑚 ⊙𝑊𝑓 ) ⊗ 𝑀 + (𝐹𝑚 ⊙𝑊𝑏 ) ⊗ 𝑀, (6)

where ⊙ denotes covolution operation,𝑊𝑓 and𝑊𝑏 are the filters.
Whywould ourmodel work? Since LD integrates foreground

local representations with the 𝐾-nearest neighbors of background
local representations, effectuating adaptive transfer of the back-
ground appearance to the foreground. Concurrently, MGD applies
different kernels on the foreground and background regions, each
region can be regarded as being assigned an individual decoder to
learn the harmonization mapping, but without introducing extra

computational cost, since all regions share the same encoder for
feature extraction.

4 EXPERIMENTS
In this section, we first introduce the datasets, metrics, and imple-
mentation details for our experiments. We then compare HDNet
with existing image harmonization methods. We further conduct
ablation experiments to evaluate the effectiveness of individual
modules in HDNet. Finally, we demonstrate the advantages of HD-
Net in real-world image harmonization applications.
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Composite GT HDNet w/o MGD w/o LD Harmonizer RainNet

Figure 4: Ablation study on samples from the testing dataset of iHarmony4.

Model HAdobe5k HFlickr HCOCO Hday2night Average
MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑ MSE↓ PSNR↑

Composite 345.54 28.16 264.35 28.32 69.37 33.94 109.65 34.01 172.47 31.63
Base 24.33 38.83 65.77 34.05 17.51 39.27 34.08 38.15 25.20 38.53
+LD 14.79 40.96 51.51 35.57 12.44 40.82 32.79 38.45 17.64 40.23
+SA 15.89 40.46 55.46 35.33 13.08 40.38 32.30 39.00 19.19 39.81

+MGD 16.37 40.81 55.56 35.36 12.82 40.75 32.44 38.82 18.99 40.13
HDNet∗ 14.39 41.03 48.46 35.79 11.94 40.91 30.69 38.80 17.08 40.34

HDNet 13.58 41.17 47.39 35.81 11.60 41.04 31.97 38.85 16.55 40.46

Table 3: Ablation study on iHarmony4 [8]. HDNet∗ indicates that we use the learned mask instead of the original mask pro-
vided by datasets. SA indicates the spatial attention module used in RainNet [23] and SCS-Co [15]

Model Parms. Time(s) PSNR↑
S2AM [9] 66.70M 0.25 34.35

DoveNet [8] 54.76M 0.05 34.76
BargainNet [6] 58.74M 0.21 35.88
Intrinsic [13] 40.86M 1.17 35.90

S2CRNet-SN [21] 0.95M 0.03 36.45

HDNet-lite 0.65M 0.04 38.63

Table 4: Average processing time on the CPU.

4.1 Experiment Setting
Datasets. Following the recent works [6, 8, 23], we conduct image
harmonization tasks on iHarmony4 benchmark [8]. iHarmony4
includes 73,146 image pairs for image harmonization and contains
four subsets: HAdobe5k, HFlickr, HCOCO, and Hday2night. Each
sample in iHarmony4 consists of a natural image, a foreground
mask, and a composite image (with the foreground generated by

GAN [11]). We follow the same partition settings of iHarmony4 as
DoveNet [8]. Note that we conduct high-resolution (i.e., 1024×1024
and 2048 × 2048) experiments on HAdobe5k since only HAdobe5k
contains high-resolution images.
ImplementationDetails.HDNet is trained from scratch by Adam
optimizer with 𝛽1 = 0.9, and 𝛽2 = 0.999. The batch size is set to 12
and we train our HDNet for 120 epochs. The initial learning rate is
set to 0.001. The initial learning rate is multiple by 0.1 in the 100-th
and 110-th epochs. All images are resized to 256×256, batch size set
to 12, and no data augmentations are adopted. We use PyTorch [27]
to implement our models with Nvidia Tesla A100 GPUs.
Evaluation. During the test phase, we use Mean Square Error
(MSE), foreground MSE (fMSE), Structural SIMilarity (SSIM), and
Peak Signal-to-Noise Ratio (PSNR) to evaluate the performance. To
illustrate performance, we qualitatively compare our method with
numerous state-of-the-art methods, including DIH [33], S2AM [9],
iS2AM [30], DoveNet [8], RainNet [23], Bargainnet [6], Intrin-
sic [13], D-HT [12], CDTNet [7], Harmonizer [18], DCCF [35],
S2CRNet [21], SCS-CO [15], SP-IC cycle [1] and INR[5].
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4.2 Comparison with Other Methods
Performances on different sub-datasets. Table 1 lists the quan-
titative results of previous state-of-the-art methods and our method.
From Table 1, we can observe that our method outperforms all of
them across all sub-datasets and all metrics. Compared to the most
recent TMM’23 method SP-IC cycle [1] on iHarmony4 dataset, our
HDNet brings 2.92 improvement in terms of MSE, and 1.65 dB
improvement in terms of PSNR.

Moreover, to make our model practical, that is, it can be used on
edge devices (e.g., mobile phones), we propose HDNet-lite. HDNet-
lite is obtained by reducing the number of HDNet channels to
1/4. Compared to the method with equivalent performance, our
HDNet-lite has fewer parameters. For example, compared to Rain-
Net and BarginNet, HDNet-lite only uses 1.2% of the parameters to
achieve better performance in the PSNR metric, demonstrating the
effectiveness of the proposed network.
Influence of foreground ratios. Following [23], we examine the
influence of different foreground ratios on the harmonization mod-
els, i.e., 0% to 5%, 5% to 15%, 15% to 100%, and overall results. The
results of all previous methods and our HDNet are given in Table 2.
It can be observed that our HDNet achieves the best performance
among all approaches. HDNet works well at various foreground
scales, thanks to its combination of hierarchical dynamics.
Qualitative comparisons. We take a closer look at model per-
formance and provide qualitative comparisons with the previous
competing methods. From the sample results in Figure 3, it can
be easily observed that our approach integrates the foreground
objects into the background image, achieving much better visual
consistency than other methods. Our HDNet can achieve these
photorealistic results because our HDNet adaptively adjusts the
feature of foreground and background by hierarchical dynamics
learning.

4.3 Ablation Study
Visual comparison. To further illustrate the effectiveness of our
hierarchical dynamics, we show some output results of ablation
experiments in Figure 4. It can be found that compared with the
distortion results produced by the baseline, after adding our pro-
posed dynamics, the color and lighting of the output results are
close to the real images. Each dynamics contribute to the final result
because they conduct dynamic learning at different feature levels.
Effectiveness of local dynamicmodule.Our local dynamicmod-
ule adjusts the appearance of each foreground local representation
according to the 𝐾-nearest background local representations. In
Table 3, we can see that adding LD to the baseline brings 1.7 dB and
7.56 average performance improvement in terms of PSNR and MSE.
Moreover, if we remove LD from HDNet, the PSNR will decrease
by 0.23 dB and MSE will decrease by 2.44.
Effectiveness of mask-aware global dynamic module. Our
mask-aware global dynamic module integrates the local informa-
tion tomodel visual coherence. AddingMGD to themodel will bring
significant improvement, proving that it is not effective enough
to perform spatial attention [15, 23] on hybrid encoder-decoder
features since pixel-level adaptation is unsuitable for such low-level
texture features. Moreover, if we use the learned mask to replace

Model Resolution PSNR↑ MSE↓ fMSE↓ SSIM↑
Composite

1024×1024

352.05 28.10 2122.37 0.9642
DoveNet [8] 34.81 51.00 312.88 0.9729
S2AM [9] 35.68 47.01 262.39 0.9784

Intrinsic [13] 34.69 56.34 417.33 0.9471
RainNet [23] 36.61 42.56 305.17 0.9844
CDTNet [7] 38.77 21.24 152.13 0.9868
INR [5] 38.38 22.68 187.97 0.9886
HDNet 41.56 13.24 102.53 0.9931

CDTNet [7]
2048×2048

37.66 29.02 198.85 0.9845
INR [5] 38.35 24.08 192.20 0.9886
HDNet 41.29 18.35 147.25 0.9911

Table 5: High-resolution experiments on HAdobe5K.

the original mask, the performance will decline, indicating that the
learned mask is unreliable.
Harmonization performance on CPU. Our HDNet shows rel-
atively fast processing speed on CPU devices, which enables our
method to run on the device side without any cloud computation.
To this end, we compare the proposed HDNet with other baseline
methods [6, 8, 9, 12, 21] in harmonizing under the same experimen-
tal environment (Intel Xeon Platinum 8369B CPU on Ubuntu 18.04).
The evaluations are conducted on the 50 images in the HAdobe5k
sub-dataset and we present the average processing time in Table
4. The experimental results show that our method has the second
fastest inference speed when inference on CPU but the performance
of our model is much better than other methods.
High-resolution results. Following [7], we conduct high-resolution
image harmonization experiments. As shown in Table 5, we can
see that our method outperforms all of them across all metrics.
Compared with the most recent method INR [5], under 1024× 1024
resolution setting, our method achieves a huge average perfor-
mance gain of 9.44 in MSE, 85.44 in fMSE, 0.0045 in SSIM, and 3.18
in PSNR.
Influence of neighbors. In the local dynamic module, we need
to find the 𝐾-nearest neighbors in the background image for each
local representation of the foreground image. Next, we fuses every
foreground local representations with its 𝐾-nearest background
local representations. How to choose a suitable hyperparameter
𝑘 is thus a key. For this purpose, we perform a low-resolution
harmonization task (i.e., 256 × 256) by varying the value of 𝐾 ∈
{1, 3, 5, 7, 9}, and show the results in Figure 5. It can be observed
that the performance is best when 𝐾 is equal to 1. This may be
attributed to the provision of potentially negative information by
an excessive number of local representations.

5 CONCLUSION
This paper proposes a hierarchical dynamic network (HDNet) from
local to global that gradually builds local dynamic module andmask-
aware global dynamic module. Local dynamic module fuses each
foreground local representation with its 𝐾-nearest neighbor back-
ground local representations to achieve local visual consistency.
Mask-aware global dynamic module aims to learn representations
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Figure 5: Influence of neighbors. The PSNR score decreases
and MSE increases with larger 𝐾 .

of foreground and background regions as well as their correlations
from the global view, facilitating global visual consistency for the
images much more efficiently. Our method achieves state-of-the-art
performances on the benchmark dataset iHarmony4 and our light-
weight version model HDNet-lite achieves state-of-the-art results
compared to other methods while only has 0.65MB parameters.
Our limitation mainly lies in the dependency on mask. When a
disharmonious image does not provide a mask, the performance of
using a learning mask is not good. Future investigation into these
issues should be required.

REFERENCES
[1] Xun Cai, Qingjie Shi, Yanbo Gao, Shuai Li, Wei Hua, and Tian Xie. 2023. A

Structure-Preserving and Illumination-Consistent Cycle Framework for Image
Harmonization. IEEE Trans. Multim. (2023).

[2] Yingjie Cai, Xuesong Chen, Chao Zhang, Kwan-Yee Lin, Xiaogang Wang, and
Hongsheng Li. 2021. Semantic scene completion via integrating instances and
scene in-the-loop. In CVPR. 324–333.

[3] Feng Chen, Fei Wu, Jing Xu, Guangwei Gao, Qi Ge, and Xiao-Yuan Jing. 2021.
Adaptive deformable convolutional network. Neurocomputing 453 (2021), 853–
864.

[4] Jin Chen, Xijun Wang, Zichao Guo, Xiangyu Zhang, and Jian Sun. 2021. Dynamic
region-aware convolution. In CVPR. 8064–8073.

[5] Jianqi Chen, Yilan Zhang, Zhengxia Zou, Keyan Chen, and Zhenwei Shi. 2023.
Dense Pixel-to-Pixel Harmonization via Continuous Image Representation. arXiv
preprint arXiv:2303.01681 (2023).

[6] Wenyan Cong, Li Niu, Jianfu Zhang, Jing Liang, and Liqing Zhang. 2021. Bar-
gainnet: Background-Guided Domain Translation for Image Harmonization. In
ICME. 1–6.

[7] Wenyan Cong, Xinhao Tao, Li Niu, Jing Liang, Xuesong Gao, Qihao Sun, and
Liqing Zhang. 2022. High-Resolution Image Harmonization via Collaborative
Dual Transformations. In CVPR. 18470–18479.

[8] Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, Weiyuan Li, and Liqing
Zhang. 2020. DoveNet: Deep Image Harmonization via Domain Verification. In
CVPR. 8391–8400.

[9] Xiaodong Cun and Chi-Man Pun. 2020. Improving the Harmony of the Composite
Image by Spatial-SeparatedAttentionModule. IEEE Trans. Image Process. 29 (2020),
4759–4771.

[10] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen
Wei. 2017. Deformable convolutional networks. In ICCV. 764–773.

[11] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In NeurIPS. 2672–2680.

[12] Zonghui Guo, Dongsheng Guo, Haiyong Zheng, Zhaorui Gu, Bing Zheng, and
Junyu Dong. 2021. Image Harmonization with Transformer. In ICCV. 14850–
14859.

[13] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, and Bing Zheng. 2021.
Intrinsic Image Harmonization. In CVPR. 16367–16376.

[14] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang.
2021. Dynamic neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell.
(2021).

[15] Yucheng Hang, Bin Xia, Wenming Yang, and Qingmin Liao. 2022. Scs-co: Self-
consistent style contrastive learning for image harmonization. In CVPR. 19710–
19719.

[16] Xun Huang and Serge J. Belongie. 2017. Arbitrary Style Transfer in Real-Time
with Adaptive Instance Normalization. In ICCV. 1510–1519.

[17] Yongcheng Jing, Xiao Liu, Yukang Ding, Xinchao Wang, Errui Ding, Mingli
Song, and Shilei Wen. 2020. Dynamic Instance Normalization for Arbitrary Style
Transfer. In AAAI. 4369–4376.

[18] Zhanghan Ke, Chunyi Sun, Lei Zhu, Ke Xu, and Rynson WH Lau. 2022. Harmo-
nizer: Learning to PerformWhite-Box Image and Video Harmonization. In ECCV.
690–706.

[19] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang.
2017. Universal style transfer via feature transforms. NeurIPS 30 (2017).

[20] Yaohui Li, Yuzhe Yang, Huaxiong Li, Haoxing Chen, Liwu Xu, Leida Li, Yaqian
Li, and Yandong Guo. 2022. Transductive Aesthetic Preference Propagation for
Personalized Image Aesthetics Assessment. In ACM MM.

[21] Jingtang Liang, Xiaodong Cun, and Chi-Man Pun. 2022. Spatial-Separated Curve
Rendering Network for Efficient and High-Resolution Image Harmonization. In
ECCV.

[22] Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim, Antonio Torralba, and
Sanja Fidler. 2021. Editgan: High-precision semantic image editing. NeurIPS 34
(2021), 16331–16345.

[23] Jun Ling, Han Xue, Li Song, Rong Xie, and Xiao Gu. 2021. Region-Aware Adaptive
Instance Normalization for Image Harmonization. In CVPR. 9361–9370.

[24] J. Matías Di Martino, Gabriele Facciolo, and Enric Meinhardt-Llopis. 2016. Poisson
Image Editing. Image Process. Line 6 (2016), 300–325.

[25] Hyeonseob Nam and Hyo-Eun Kim. 2018. Batch-Instance Normalization for
Adaptively Style-Invariant Neural Networks. In NeurIPS. 2563–2572.

[26] Dae Young Park and Kwang Hee Lee. 2019. Arbitrary style transfer with style-
attentional networks. In CVPR. 5880–5888.

[27] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. NeurIPS
32 (2019).

[28] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley. 2001. Color
Transfer between Images. IEEE Computer Graphics and Applications 21, 5 (2001),
34–41.

[29] Jing Shi, Ning Xu, Haitian Zheng, Alex Smith, Jiebo Luo, and Chenliang Xu.
2022. SpaceEdit: Learning a Unified Editing Space for Open-Domain Image Color
Editing. In CVPR. 19730–19739.

[30] Konstantin Sofiiuk, Polina Popenova, and Anton Konushin. 2021. Foreground-
aware semantic representations for image harmonization. In WACV. 1620–1629.

[31] Kalyan Sunkavalli, Micah K Johnson, Wojciech Matusik, and Hanspeter Pfister.
2010. Multi-scale image harmonization. ACM Trans. Graph. 29, 4 (2010), 1–10.

[32] Jiaxiang Tang, Xiaokang Chen, JingboWang, and Gang Zeng. 2022. Not all voxels
are equal: Semantic scene completion from the point-voxel perspective. In AAAI,
Vol. 36. 2352–2360.

[33] Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, and Ming-
Hsuan Yang. 2017. Deep Image Harmonization. In CVPR. 2799–2807.

[34] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. 2018. Cbam:
Convolutional block attention module. In ECCV. 3–19.

[35] Ben Xue, Shenghui Ran, Quan Chen, Rongfei Jia, Binqiang Zhao, and Xing Tang.
2022. DCCF: Deep Comprehensible Color Filter Learning Framework for High-
Resolution Image Harmonization. In ECCV.

[36] Su Xue, Aseem Agarwala, Julie Dorsey, and Holly E. Rushmeier. 2012. Under-
standing and improving the realism of image composites. ACM Trans. Graph. 31,
4 (2012), 84:1–84:10.

[37] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. 2019. Deformable ConvNets
V2: More Deformable, Better Results. In CVPR. 9308–9316.


	Abstract
	1 Introduction
	2 Related Works
	2.1 Image Harmonization
	2.2 Style Transfer
	2.3 Dynamics in Computer Vision

	3 Methodology
	3.1 Overview
	3.2 Local Dynamic Module
	3.3 Mask-aware Global Dynamic Module

	4 Experiments
	4.1 Experiment Setting
	4.2 Comparison with Other Methods
	4.3 Ablation Study

	5 Conclusion
	References

