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Abstract

Few-shot image classification aims to recognize unseen categories with only a few labeled

training samples. Recent metric-based approaches tend to represent each sample with a high-

level semantic representation and make decisions according to the similarities between the

query sample and support categories. However, high-level concepts are identified to be poor at

generalizing to novel concepts that differ from previous seen concepts due to domain shifts.

Moreover, most existing methods conduct one-way instance-level metric without involving

more discriminative local relations. In this paper, we propose a Local Mutual Metric Network

(LM2N), which combines low-level structural representations with high-level semantic

representations by unifying all abstraction levels of the embedding network to achieve a

balance between discrimination and generalization ability. We also propose a novel local

mutual metric strategy to collect and reweight local relations in a bidirectional manner.

Extensive experiments on five benchmark datasets (i.e. miniImageNet, tieredImageNet and

three fine-grained datasets) show the superiority of our proposed method.
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1 Introduction

Despite that deep learning [10 , 18] has made tremendous advances in many machine learning

tasks [37], its data-driven nature restricts its performance and efficiency in practical

applications where collecting enough samples and correctly labeling them are expensive.

Therefore, Few-shot Learning (FSL) [7 , 8 , 16] is widely studied recently, which aims to

generalize to novel unseen categories with scarce data after training on seen categories with

sufficient data. Few-shot Image Classification (FSIC) [12 , 23] is one of the well-studied fields in

FSL, which aims at making classification on unseen categories with a small number of training

samples.

Recently, many meta-learning based approaches have been proposed to solve the FSIC

problem, which can be divided into two main streams: optimization-based approaches [8 , 31]

and metric-based approaches [20 , 29]. Specifically, approaches based on optimization target at

learning a suitable initialization or updating strategy for the base model, which helps the base

model to converge on novel tasks with a few steps of gradient descent. Metric-based approaches

aim to learn a transferable feature space, in which the homogeneous samples are close to each

other while the heterogeneous samples are far away and the query samples are categorized by

measuring their similarities with the labeled support categories.

Metric-based methods [9 , 21 , 22 , 30 , 32 , 34] have attracted a lot of attention due to their

efficiency and simplicity on solving the FSIC problem. However, there are still some limitations

remain to be solved.

First, most metric-based approaches adopt the high-level semantic representation [3 , 30 , 32]

to describe each sample. Although high-level representations contain rich semantic information

with high degree of discrimination, they are not shared between different categories compared

with low-level features [19]. Meanwhile, recent metric-based approaches mainly follow the

paradigm of meta-learning, which is inherently designed to enhance the generalization ability

of the base model by learning inductive bias (meta knowledge) [11]. However, several recent

works [5 , 33] show that the classic pretraining combined with fine tuning beats the advanced

meta-learning methods, which indicates that generalizing just by meta knowledge is far from

enough. Second, recent methods mainly conduct instance-level metric [22 , 30 , 32] while ignore

the local relations between two feature maps, which can not reveal the true similarities and is

obviously inefficient in practice.

To solve the above limitations, in this paper, we first propose a local representation fusion

strategy to combine low-level representations with high-level representations. We further

propose a non-parametric Local Mutual Metric Module (LM3), which comprehensively

compares two feature maps by collecting and reweighting their local relations.

Our main contributions are as follows:

We propose a representation fusion strategy to make use of both low-level and high-level

features by a learned fusion layer, which aims to achieve a balance between discrimination

and generalization ability.

We design a novel local mutual metric strategy for the FSIC problem, which explores the

pairwise local relations between two feature maps in a bidirectional manner.

We adopt a Convolutional Block Attention Module (CBAM) [36] to select and highlight

discriminative semantic regions.

2 Related Works

Recent meta-learning based FSIC approaches can be broadly divided into two branches:

optimization-based and metric-based approaches.

2.1 Optimization-Based Approaches

Optimization-based approaches [2 , 8 , 31] utilize the meta learner to learn optimal

initialization parameters for the base learner, which is sensitive to novel samples so that the

base model can fast adapt to unseen categories with only a few steps of gradient descent.

MAML [8] is a typical optimization-based method for the FSIC, which concludes parameterized

meta knowledge from a series of episodes (tasks) to boost model-agnostic generalization ability.

Later optimization-based approaches mainly follow the ideology of MAML.

However, optimization-based approaches suffer from the computation of high-order gradient [

25], which is out of question in our metric-based LM2N.

2.2 Metric-Based Approaches

Metric-based approaches [4 , 9 , 21 , 22 , 30 , 32 , 34] aim to learn a transferable embedding

space (feature extractor), in which to map labeled support samples and unlabeled query

samples. Final classification is completed by comparing the distances between query samples

and support categories. Obviously, the key points of metric-based approaches are transferable

feature representations and an effective metric strategy.

Specifically, Matching Network [34] utilizes a LSTM for feature embedding and compares the

cosine similarities between feature maps for classification. Note that the Matching Network

also proposes the widely used episodic training mechanism. Prototypical Network [ 30] utilizes

the center of the support class as the class representation (prototype) and makes classification

by computing the Euclidean distances between query samples and class prototypes. Relation

Network [32] follows the representation strategy of [30] and proposes a novel MLP-based

metric, which aims to learn a transferable and effective nonlinear metric function.

Unlike the above approaches, CovaMNet [22] represents images by local representations,

which treats a feature map (a  tensor) as  d-dimension local representation

vectors. CovaMNet makes classification according to the distribution consistency between

query samples and support categories. DN4 [21] and SAML [9] also follow the local

representation strategy.

Based on the local representation mechanism, our LM2N unifies low-level and high-level

features for a fused local representation. Unlike the existing instance-level metric, we propose a

novel local mutual metric strategy, which explores the local relations between two feature maps

bilaterally to reveal their local correlations comprehensively. Note that some methods have

explored the local metric in FSIC, i.e. DN4 [21] and SAML [9]. DN4 utilizes a unidirectional

Nearest Neighbor searching to acquire the local relations of two feature maps and makes

classification according to the summation of the pairwise local similarities, which shows

promising performance. SAML uses a relation matrix to collect and select useful pairwise local

vectors, followed by a MLP-based nonlinear metric network [32].

3 Methodology

3.1 Problem Formulation

In this paper, we follow the classic episodic training [34] mechanism. Specifically, we utilize a

series of episodes (tasks) on the training set to train the model and evaluate the model with a

series of episodes on the test set.

In each episode, we randomly sample a support set with N categories (K samples per category) 

 and an unlabeled query set with NM samples 

. Notice that  and  share the same label space. Finally, each episode

can be viewed as a N-way K-shot task, which aims to categorize the NM query samples into the

N categories with only K labeled samples per category.

Fig. 1.
The overview of our proposed LM2N under the 5-way 1-shot setting.

3.2 Overview

The overview of our proposed LM2N is shown in Fig. 1. First, we feed the support set (5-way 1-

shot setting) and a query sample into the embedding network . Then, a fusion layer  is

applied to fuse the outputs of all layers of the feature extractor, which automatically learns the

weight of each layer to balance the discrimination and generalization. After the representation

fusion, an attention module  based on the CBAM [36] is utilized to highlight the semantic

regions. Finally, we measure the similarities between the query feature map with five support

categories through the LM3 and obtain the final similarity scores.

Fig. 2.
The structure of the CBAM.

3.3 Local Representation Fusion Layer

Representation fusion has achieved promising performance in object detection and image

segmentation [24 , 38] while it is rarely used in the field of FSIC. In this paper, we introduce a

representation fusion strategy into FSIC.

Specifically, given a n-layer embedding network, we aim to unify the outputs of these n layers

(n representation maps). In practice, there is no enough prior knowledge to give appropriate

weights to these n feature maps. Therefore, a fusion layer  is utilized to learn the fusion

weights under the meta-learning framework. In practice, we resize these posterior feature maps

to the same size and combine them by concatenation before putting into the fusion layer. After

the representation fusion, we can obtain a balanced feature map:

Where  denotes the outputs of the meaningful layers of the backbone . Following [9],

we view the 3D vector  as  d-dimension local vectors:  and each

local vector  represents the information of the corresponding region of the feature map.

3.4 Attention Module

To help the model capture the semantic regions, we adopt the widely adopted attention

mechanism CBAM [36 , 40] in our model (see in Fig. 2).

Generally, CBAM consists of two parts, i.e. channel attention and spatial attention. Specifically,

channel attention first squeezes the feature map along the spatial dimension by global average

pooling and global max pooling to obtain two weight tensors. Then the two weight tensors are

combined to generate the channel attention weight, which is further used to refine the feature

map. Similar to the channel attention, spatial attention squeezes the feature map along the

channel dimension and generates the spatial attention weight, which expands along the

channel dimension to refine the feature.

Through the attention module , the semantic objects are effectively highlighted, which

contributes to the further metric (see Table 3).

3.5 Local Mutual Metric Module (LM3)

In this paper, we propose a novel local mutual metric strategy to explore the local relations

between two feature maps in a bidirectional manner. Given a support class 

 and a query instance q, following the above procedures, we adopt the

central class strategy [30] here for concise expression:

We rewrite them by local representations:

Then a LM3 is applied to calculate the similarity between  and . We first define a local

compare function g(, ) [9] to calculate the similarity between two local vectors. Mathematically,

the local mutual metric function is defined as:

Here, T denotes the influence coefficient of the similarity, which gives the similar local vector

pairs much higher weights while gives the dissimilar local vector pairs much lower weights. The

value of the local mutual metric function h(, ) represents the similarity score between the query

sample q and the n-th support class .

Given an episode, there are N categories in the support set  and NM unlabeled

samples in the query set . Therefore, for each query sample there are N

similarity scores involving N support classes. We utilize the softmax function to compute the

probabilities and the final loss function of this episode is defined as:

in which  represents the predicted label for  and  is a flag function that equals one if its

argument is true and zero otherwise.

4 Experiments

4.1 Datasets

We evaluate our method on five benchmark datasets, and all images are resized to  in

our model.

mini ImageNet. miniImageNet [34] is sampled from the ImageNet [6], which consists of 100

categories and 600 samples per category. We split it into 64, 16 and 20 categories for training,

validation and test by convention, respectively [22].

tiered ImageNet. tieredImageNet [27] is also a subset of the ImageNet [6]. There are 608

categories and 779, 165 images in it. We split the dataset into 351, 97 and 160 categories for

training, validation and test, respectively.

Stanford Dogs , Stanford Cars  CUB-200-2011 . We utilize three fine-grained

datasets to evaluate the fine-grained FSIC performance of our method. For Stanford Dogs [14],

we divide it into 70, 20 and 30 classes. For Stanford Cars [17], we split it into 130, 17 and 49

categories while for CUB-200-2011 [35], we choose 100 classes for training and both 50 classes

for validation and test [22].

4.2 Network Architecture

In our model, the main network architecture consists of the embedding network, the

representation fusion layer and the attention module.

Specifically, the embedding network is a 4-layer CNN [ 21 , 22] with four convolutional blocks

and each convolutional block contains a convolutional layer with 64  filters, a batch

normalization layer and a Leaky ReLU layer. In addition, we add  max pooling after the

first two convolutional blocks. The representation fusion layer is actually a  convolutional

layer.

The attention module consists of a 2-layer MLP to learn the channel attention weight and a 

 convolutional layer to learn the spatial attention weight [40].

4.3 Experimental Settings

We implement our model under the framework of Pytorch [26]. Specifically, under the setting

of the meta-learning (episodic training), we train, validate and test our model on a series of N-

way K-shot episodes (tasks) randomly sampled from the training set, validation set and test set

respectively. Specifically, for the end-to-end training stage, we randomly construct 200, 000

episodes from the training set and 20, 000 episodes from the validation set. When 

, a 5-class episode contains 1 support sample and 10 query samples per calss;

when , a 5-class episode contains 5 support samples and 10 query samples per

class.

Notice that we initialize the learning rate to 0.005 and halve it per 40, 000 episodes. A widely

adopted Adam [15] optimizer is applied to optimize our model during the training procedure.

During the test stage, we randomly construct 600 episodes to evaluate the performance of our

model on novel concepts.

4.4 Comparisons with Other Methods

Experiments on the Routine FSIC Datasets. We compare our LM2N with both

optimization-based and metric-based SOTA methods on miniImageNet and tieredImageNet. As

is shown in Table 1, our LM2N achieves promising performance on both datasets under both

settings. Specifically, on the miniImageNet, our LM2N achieves the best results under both 1-

shot and 5-shot settings with 0.58% and 0.96% improvements respectively. Compared with our

base model Prototypical Network, our method achieves 3.80% and 3.78% improvements. On

the tieredImageNet, our LM2N also achieves competitive performance compared with the other

methods.

The outstanding performances indicate the effectiveness of our method, which explores the

mutual local relations between the query samples and the support categories. Most previous

methods compare the query samples and the support categories on the instance-level while

DN4 conducts a local metric by searching out the local nearest neighbors. Unlike these

methods, our L2MN takes a mutual view to collect local relations and takes a whole picture of

the feature maps. Besides, the representation fusion strategy enhances the generalization

ability to novel concepts and the attention mechanism highlights the discriminative features.

Experiments on the Fine-Grained FSIC Datasets. We also compare our method with the

SOTA method on three fine-grained FSIC datasets. As is shown in Table 2, LM2N achieves

competitive performances. Specifically, our LM2N achieve the best performances on four

columns with 0.14%–4.12% improvement while on the other two columns LM2N both achieves

the second best results.

Our LM2N is naturally suitable for fine-grained problems. For one thing, LM2N utilizes the

local metric strategy to explore the local relations between two feature maps, for another, the

attention mechanism helps to highlight the discriminative local regions, which is obviously

effective on fine-grained FSIC.

5 Discussion

5.1 Ablation Study

In this paper we introduce the representation fusion strategy to FSIC tasks and propose a novel

local mutual metric mechanism. Moreover, we adopt CBAM as the attention module to

highlight the discriminative local regions [40]. In general, these three parts achieve promising

performance together while we also want to know their respective contributions to the model.

Therefore, we design the ablation study to reveal the contributions of each part. Specifically, we

step-by-step remove one or several parts and make comparisons with the original model (see

Table 3). Experimental results show that each component more or less contributes to the

model.

5.2 Cross-Domain FSIC Analysis

To further evaluate the robustness of our LM2N when facing severe domain-shift, we conduct

cross-domain experiments by training on the miniImageNet and testing on the CUB-200-2011 [

5]. Experimental results are shown in Table 4. From the table we can see that our LM2N shows

better generalization ability than most previous methods when facing large domain shift.

5.3 Influence of Different Local Compare Functions

In the local mutual metric module, we utilize the local compare function g(, ) to measure the

similarity between two local vectors. Certainly, the local metric function has many choices, e.g.

cosine similarity, Euclidean similarity and Gaussian similarity [9].

Cosine similarity:

Euclidean similarity:

Gaussian similarity:

Obviously, as is shown in Table 5, cosine similarity achieves the best performance under both

settings.

6 Conclusion

In this paper, we propose a Local Mutual Metric Network for the FSIC. We propose a novel

metric strategy LM3 to explore the local relations between two feature maps in a bidirectional

manner for a more effective metric. We also achieves a balance between discrimination and

generalization ability by multi-level representation fusion. An attention module is adopted to

highlight the semantic objects. Experimental results on five FSIC benchmark datasets show the

superiority of our method. Ablation study and the experiments on the cross-domain FSIC task

demonstrate the effectiveness and the robustness of our method.
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Table 1.
Comparisons with the state-of-the-art methods on miniImageNet and tieredImageNet
with 95% confidence intervals. The best and the second best results of each column are
shown in red and blue respectively.

Model Type miniImageNet tieredImageNet

1-shot(%) 5-shot(%) 1-shot(%) 5-shot(%)

MAML [8] Optimization

MTL [31] Optimization – –

MAML++ [2
]

Optimization – –

MatchingNet
[34]

Metric – –

IMP [1] Metric – –

SAML [9] Metric – –

DSN [29] Metric – –

TNet [39] Metric 52.39 67.89 – –

GNN [28] Metric – –

ProtoNet [
30]

Metric

RelationNet
[32]

Metric

CovaMNet [
22]

Metric

DN4 [21] Metric

LM2N(Ours) Metric

48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75

45.60 ± 1.84 61.20 ± 0.90

52.15 ± 0.26 68.32 ± 0.44

43.56 ± 0.84 55.31 ± 0.73

49.60 ± 0.80 68.10 ± 0.80

67.32 ± 0.75

51.78 ± 0.96 68.99 ± 0.69

50.33 ± 0.36 66.41 ± 0.63

49.42 ± 0.78 68.20 ± 0.66 48.58 ± 0.87 69.57 ± 0.75

50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.31 ± 0.78

51.19 ± 0.76 67.65 ± 0.63 71.51 ± 0.75

51.24 ± 0.74 53.37 ± 0.86

Table 2.
Experiments on three fine-grained datasets. The best and the second best results of each
column are shown in red and blue respectively.

Model 5-Way accuracy(  )

Stanford dogs Stanford Cars CUB-200-2011

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet [34] 35.80 47.50 34.80 44.70 61.16 72.86

ProtoNet [30] 37.59 48.19 40.90 52.93 51.31 70.77

MAML [8] 45.81 60.01 48.17 61.85 55.92 72.09

RelationNet [32] 44.49 56.35 48.59 60.98 62.45 76.11

CovaMNet [22] 63.04 56.65 71.33 60.58 74.24

DN4 [21] 45.41 52.79

LRPABN [13] 46.17 59.11 56.31 70.23 76.06

LM2N(Ours)

%

Table 3.
Ablation study on miniImageNet.

Ablation models 5-way accuracy (%)

Fusion Attention LM3 1-shot 5-shot

   49.24 68.70

  50.42 68.96

  50.16 68.03

  51.63 70.13

 50.91 69.65

 52.46 71.01

 51.93 71.15

√

√

√

√ √

√ √

√ √

√ √ √

Table 4.
Cross-domain performance (miniImageNet  CUB). We adopt the results of the
Resnet-18 reported by [5].

Model Embedding 5-way 5-shot(%)

Baseline [5] Resnet-18

MatchingNet [34] Resnet-18

ProtoNet [30] Resnet-18

MAML [8] Resnet-18

RelationNet [32] Resnet-18

CovaMNet [22] Conv-64F

DN4 [21] Conv-64F

QPN (Ours) Conv-64F

→

53.07 ± 0.74

62.02 ± 0.70

51.34 ± 0.72

57.71 ± 0.73

63.21 ± 0.68

63.42 ± 0.70

Table 5.
The performance with different similarity functions on miniImageNet.

Metric 5-way 1-shot 5-way 5-shot

Gaussian

Euclidean

Cosine

51.08 ± 0.87 70.63 ± 0.82

(8)𝑔(𝑎, 𝑏) = .
𝑏𝑎𝑇

||𝑎|| ⋅ ||𝑏||

(9)𝑔(𝑎, 𝑏) = .
1

𝑒||𝑎−𝑏||2

(10)𝑔(𝑎, 𝑏) = .𝑒𝑎⋅𝑏
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