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ABSTRACT KEYWORDS
Personalized image aesthetics assessment (PIAA) aims at capturing personalized image aesthetic assessment; meta-learning; transduc-
individual aesthetic preference. Fine-tuning on personalized data tive label propagation

has been proven to be effective in PIAA task. However, a fixed fine-
tuning strategy may cause under/over-fitting on limited personal
data and it also brings additional training cost. To alleviate these
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query set. Then, we extract deep aesthetic features with a pre-

trained generic image aesthetic assessment (GIAA) model. Next, we 1 INTRODUCTION

treat image features as graph nodes and their similarities as edge
weights to construct an undirected nearest neighbor graph for infer-
ence. Instead of fine-tuning on support set, TAPP-PIAA propagates
aesthetic preference from support to query set with a predefined
propagation formula. Finally, to learn a generalizable aesthetic rep-
resentation for various users, we optimize our TAPP-PIAA across
different users with meta-learning framework. Experimental re-
sults indicate that our TAPP-PIAA can surpass the state-of-the-art
methods on benchmark databases.

Computational photo aesthetic assessment is a long-standing prob-
lem in affective computing research [24]. With explosive growth
of camera phones and self-media market, the ability of photo man-
agement has shown great essentiality in many real-world problems
[6]. However, picking up higher quality and appealing photos man-
ually is time-consuming and tangled usually. To save time and be
more efficient, we hope that our computational machines could
share similar aesthetic perception as human and filter materials
automatically. Traditional image aesthetic assessment aims at gen-
erating predictions based on voting from multi-annotators or mean
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Figure 1: Learning individual aesthetic preferences by fine-
tuning on limited data may cause under/over-fitting. In this
work, we utilize a graph-based transductive knowledge prop-
agation algorithm instead of fine-tuning.

single image varies from one to another. Therefore, it requires the
learning model to have a strong generalization ability, so that it
can fit well on various users’ aesthetic preferences. 2) Second, the
amount of annotated personalized data is often limited [25] and
learning with scarce data is a fundamental challenge in deep model-
based vision reasoning. To summarize, PIAA requires the model
to have a strong generalization ability while essentially we only
have limited annotated data. The aforementioned requirements are
in line with few-shot learning (FSL) settings, which inspire us to
locate PIAA under the FSL scenario.

Few-shot learning aims at designing efficient learning algorithms
that can generalize to novel tasks with limited annotations [7].
Recently, meta learning-based approaches have achieved success
in FSL. Specifically, meta-learning utilizes the episodic training
mechanism to obtain a representation with strong generalization
ability [28]. By training on a series of meta-tasks, meta-learning
has been proven to generalize well in many vision tasks, such
as few-shot image classification [3, 17, 34]. Beyond these, recent
works [31, 36] have also introduced meta-learning into PIAA task.
By regarding each user’s data as a meta-task, learning algorithms
are designed to capture individual aesthetic preference by training
across different users.

Although meta-learning framework can improve the generaliza-
tion ability across different users, how to learn individual aesthetic
preference sufficiently with scarce data remains challenging. Ex-
isting methods learn user preferences with limited data by a fixed
fine-tuning strategy, which may cause under/over-fitting [1, 2] (see
Fig. 1) and also bring additional training cost. To address these
issues, we introduce a meta learning-based Transductive Aesthetic
Preference Propagation (TAPP-PIAA) algorithm into PIAA task.
Instead of directly training with limited annotations, we propose
to make use of unlabeled data with transductive inference and
propagate individual aesthetic knowledge through an undirected
graph. First, we split each meta-task into a labeled support set and
an unlabeled query set. Then, we extract all image features with
a GIAA pre-trained CNN. To model relationship among images,
we regard image features as nodes and their similarities as edge
weights to construct an undirected nearest neighbor graph. Based
on transductive inference, we propagate individual aesthetic knowl-
edge among connected graph nodes with a predefined propagation
formula. Finally, we optimize our TAPP-PIAA algorithm under the
meta-learning framework to learn a representation with stronger
generalization abilities.
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Contributions of this work are summarized in three folds:

e We first-time propose using a Transductive Aesthetic Pref-
erence Propagation (TAPP-PIAA) algorithm that introduces
the graph-based label propagation mechanism into PIAA
task. It takes advantage of both labeled and unlabeled data to
infer aesthetic preferences without personalized fine-tuning.

e We extend the existing classification-based label propaga-
tion mechanism into a regression-based one for modeling
aesthetic preferences in a continuous space. The extended
propagation mechanism is also applicable in meta-learning
framework to enhance the generalization ability.

e We apply the proposed TAPP-PIAA on three benchmark
databases Flickr-AES, AADB and REAL-CUR. Experimental
results show that our TAPP-PIAA can generalize well on
unseen users and outperform the state-of-the-art method.

2 RELATED WORKS

2.1 Personalized Image Aesthetic Assessment

The approaches of modeling aesthetic preference varies. [25] pro-
poses a residual-based method to model PIAA task by aggregat-
ing generic and personal preference offset together. Multi-modal
learning has also been introduced into PIAA task in [30], which
takes advantage of text-based photo aesthetic reviews to obtain
personalized aesthetic representations. Beyond these, inspired by
multi-task learning strategy, recent work PA-IAA [15] proposes
jointly learning personalized and generic aesthetic data to boost
the performances of both GIAA and PIAA. Meanwhile, [19] has
adapted deep reinforcement learning strategies into PIAA task,
which makes use of users’ interactions for training.

In addition, meta-learning framework has also been introduced
into PIAA task for it can enhance the generalization ability of mod-
els [8, 9]. [31] first-time introduces meta-learning framework into
PIAA task and models personalized residual components to assist
the pre-trained GIAA model. In this way, model can learn to infer
aesthetic preferences of various users and generalize well to novel
users. Besides, in order to learn aesthetic prior knowledge with
a stronger generalization ability, BLG-PIAA [36] utilizes a bilevel
gradient optimization strategy [9] to optimize the model under the
meta-learning framework. With the meta-learned prior knowledge,
the model can generalize to unseen users quickly. Although meta-
learning framework has achieved promising performances in PIAA
task, the fundamental difficulty of mining individual aesthetic pref-
erence with limited annotations has not yet been properly solved.
Most existing methods learn individual preference by fine-tuning
[15, 25, 31, 36]. In this work, we follow the meta-learning frame-
work and focus on digging out personal aesthetic preferences with
the help of unlabeled data.

2.2 Meta-Learning

Despite the great success in deep learning, large-scale learning
algorithms still suffer from their data-driven natures and can hardly
generalize to unseen tasks with a few annotations [32]. To tackle
these limitations, meta-learning has been introduced to improve
generalization ability with designed episodic training mechanism
[28, 31]. Specifically, the training set is divided into many episodes
(meta-tasks), where each episode contains a small labeled support
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Figure 2: The overall framework of our proposed TAPP-PIAA.

set for training and an unlabeled query set for evaluation. Then, a
series of meta-tasks are feed into learning algorithms to learn task
adaptation knowledge. Therefore, episodic training mechanism can
enhance the generalization ability and help the algorithm to learn
novel tasks with few data [8, 16].

Existing meta-learning approaches could be briefly divided into
two branches: optimization-based and metric learning-based. First,
optimization-based methods aim to learn shared prior knowledge
that can generalize to novel tasks quickly [8, 9]. Specifically, MAML
[8] utilizes a model-agnostic meta-learner to learn shared aesthetic
prior knowledge via a second-order gradient optimization. Besides,
[9] regards meta-training process as a hierarchical optimization
problem and thus simplifies the optimization procedures. Second,
metric learning-based methods aim to learn a shared representation
space for different tasks [26]. Different from optimization-based
methods, without training on scarce data, metric learning-based
methods make inference according to the similarities between
support and query samples. Typical methods like DN4 [16] rep-
resents images by deep local features and designs an image-to-class
measurement strategy to compare pair-wise semantic similarities.
Besides, TPN [18] incorporates transductive inference into meta-
learning framework to deal with the problem of data scarcity by
making use of both labeled and unlabeled data. Based on above
discussions and analyses, we propose to explore PIAA task from
the perspective of metric learning-based meta-learning. Moreover,
to deal with data scarcity, we decide to make use of unlabeled query
samples through the transductive inference.

2.3 Transductive Inference

Transductive inference [27] is one of the semi-supervised learn-
ing methods. Inductive inference first induces a rule from training
set and then uses it to predict test set. Differently, transductive
inference follows the assumption that test set is available. As a
result, transductive inference can alleviate data scarcity to a certain
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extent, so it is suitable for few-shot tasks. In this work, we follow
the transductive inference to tackle PIAA task. Transductive label
propagation, as a main mean of transductive inference, utilizes a
graph structure to discover the relationship between labeled and
unlabeled samples. Early works [35] and [37] propagate label in-
formation from labeled to unlabeled samples via a fully-connected
graph. In few-shot scenarios, TPN [18] and iLPC [14] first extract
support and query features and then construct an undirected near-
est neighbor graph. Then, classification knowledge is propagated
from support to query samples through graph edges. In this work,
we modify the traditional classification-based transductive label
propagation to a regression-based one for aesthetic preference prop-
agation due to its subjective nature.

3 PROPOSED METHOD
3.1 Problem Formulation

In our proposed method, we follow the meta-learning framework
[28] to divide the whole pipeline into two parts: meta-training 77,
and meta-test 7ze. In meta-training phase, we sample T meta-tasks
from training users’ data: 7, = {(Dj5,., D?r)i}iT;r Here, (D}, Dfr)i
represents the pair of training and test sets in the i-th meta-task,
which are usually called support and query sets. Specifically, Dj,
contains N labeled samples while D;Ir includes M unlabeled sam-
ples. Note that D7 and Z)gr from the same meta-task are both
sampled from the same user’s data without intersection. In meta-
test phase, we follow the settings of meta-training and sample
totally T, meta-tasks from test users’ data: 7z = {(Dj,, Z)?e )j }f;l
for evaluation. Under meta-learning framework, we optimize our
model on 77, to boost its performance on unseen novel meta-tasks
in 77. The objective function for meta-training is defined as follow:

. ) D)) y: b, )
mn B3 LECGHEFO . 0
(D},.Df)<Tir Cey)eDy,
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where p(77) is the overall task distribution. Besides, ¥4 is an em-
bedding network with learnable parameter ¢ and {'(-) is a reasoning
strategy to predict the label of x. The prediction is then used to
calculate loss function £ with ground truth y. In this work, {(-) is
our TAPP-PIAA algorithm.

3.2 Overall Framework

As is shown in Fig. 2, we divide the whole pipeline into two phases:
meta-training and meta-test. Notice that they both consist of ran-
domly sampled meta-tasks. Meta-training phase contains four parts:
feature embedding, graph construction, transductive aesthetic pref-
erence propagation and loss computation. Specifically, given a meta-
task, we first extract features of all samples. Then, we regard all
image features in a meta-task as nodes and their similarities as edge
weights to construct an undirected nearest neighbor graph. After
that, aesthetic preference is directly propagated with a designed
rule. Finally, the mean square error loss is utilized for optimization.
During meta-training phase, our model is trained across a series of
meta-tasks to learn a generalizable aesthetic representation. During
meta-test phase, we utilize the meta-trained model to infer test
user’s aesthetic preference.

3.3 Feature Embedding

Given an input image x, we utilize a pre-trained CNN F4 with

learnable parameter ¢ to extract its feature map as a 3D tensor:
%= 7'-(]5(3(') c chhxw, (2)

where ¢, h and w are the three dimensions of x. Given a meta-task

(D}, Dfr), where support set D}, consists of N labeled images

S
{xl,...

of M unlabeled images {x?, e

,xj+ with labels {y3,...,y},} and query set Z)gr consists
,ler}. We embed all images by ¥

and construct a feature set: X = {xf .. fc]s\] fc;’, .. x]({/[}

3.4 Nearest Neighbor Graph Construction

After feature extraction, we detail the procedures of graph con-
struction. Generally, a graph G = (V, E) consists of two parts: a
set of vertices V (i.e., nodes) and a set of edges E. Specifically, we
first normalize the feature set X with Io-norm to form the ver-
texset V.= {vi,..., VN, VN+1s - - -» VN+M }- Since we want aesthetic
knowledge to propagate among aesthetically similar images [11],
we design to construct an undirected nearest neighbor graph [14]
for aesthetic preference propagation. Here, a sparse affinity matrix
W € RIN¥M)X(N+M) g defined below based on Cosine similarity:

T

ViVj e,
Wi = exp(ﬁ), ifi #jAvieN(vj) ’ 3)

0, otherwise

i,j € [1, N + M], where v; is the i-th element of the l,-normalized
vertex set V and Ny (v;) denotes the set of top k nearest neighbors of
vj in V. Besides, o is a predefined scale parameter of the Gaussian
function. With Eq. 3, we can obtain a symmetric non-negative
adjacency matrix A = %(W +Wh. Finally, we normalize each row
of A and denote the normalized adjacency matrix as A.
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3.5 Aesthetic Preference Propagation

According to the high correlation between aesthetic features, tra-
ditional classification-based label propagation may not be suitable
for PIAA task (quantitatively discussed in Subsection 6.1). There-
fore, in this work, we propose to propagate aesthetic preference
under regression manner by optimizing a mean square error loss.
Specifically, we define the initial label matrix Y € R(N+M)X1 4.

S
Y, = {y”
0

where y? is the ground-truth label of the i-th support image. With
the constructed nearest neighbor graph and transductive inference,
each node interacts with its neighbors and updates its own label
[14]. This means the labels of all nodes change iteratively until
convergence, including both support and query labels. For persis-
tent source knowledge from support set, we decide to maintain the
initial labels of support set. Here, we clamp the original support
labels after each propagation iteration [37].

Specifically, we divide the whole label matrix Y into two parts:

1<i<N

. , (4)
N+1<i<N+M

Y = (;l) , where Y; € RN*1 refers to support labels and ¥,, € RMX1
u

is a zero matrix, denoting the initial labels of query set. Similarly, we
divide the normalized adjacency matrix A into four sub-matrices:

i A_ll A_lu
A= St 5
| A ©)
where A;; e RN*N A, e RNVM 4 1 e RMXN and A, € RM*XM
t
Then, we denote the label matrix at ¢-th step as f t = (?t) and
u

define the iterative propagation formula as: f'*! = Aft, f0 = v,
which is further expanded to:

- ]t (2)-()
qu - Aul Auu fut ’ ﬁ? W)

Based on the above analysis, we clamp Y; iteratively, which means
flt = Y] holds for all t values. Therefore, the propagation formula
can be rewritten as:

(6)

f;jﬂ = Aulflt + Auufut =AY +Auuﬁf~ (7)
The above formula can lead to a closed-form solution [37]:
f;j = (I_A_uu)_lA_ulYl’ 8)

where I is an identity matrix and we can directly use Eq. 8 to
calculate the final propagation results in practice.

3.6 Objective Function

After above procedures, we can predict a user’s aesthetic preference
£ on unlabeled query samples. Finally, we adopt the mean square
error loss to optimize each meta-task:

1.
m”fu — Yull%, )

where Y, represents the ground-truth labels of query set and M is
the number of query samples. In meta-training phase, our model is
trained on various meta-tasks to enhance its generalization ability.
During meta-test phase, we directly apply the meta-trained model
on novel users without additional training. The detailed flow of our
TAPP-PIAA is shown in Algorithm 1.

L=
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Algorithm 1 Algorithm Flow of TAPP-PIAA

Input: Meta-training set 77,; meta-test set 7z¢; learning rate f;
embedding network ¥y

Output: Predicted labels f;; of query set in each meta-task

1: Initialize model parameters ¢.
Meta-Training Phase

2 for each meta-task (D}, D?r) in 77, do
3:  while no converge do
4 X Fo (D}, U Z)?r); > feature extraction
5: Ve X: > [y-normalization
6: for i, j € [1,N + M] do W;; « affinity values; > by Eq. 3
7 A= %(W +wTh; > symmetric adjacency matrix
8: A = normalize(A); > graph normalization
9: fiy < Eq.8; > transductive propagation
10: ¢ — ¢ —PVL. > optimization by Eq. 9
11:  end while
12: end for

Meta-Test Phase
13: for meta-task (D}, the) in 7. do

14:  Load the optimal meta-trained parameters ¢*;
15 X« Fpe(Df, U D:Ie); > feature extraction

16:  f;; « follow step 5-9. > inference
17:  return f;.
18: end for

4 EXPERIMENTS
4.1 Databases

In this work, we evaluate the effectiveness of our proposed method
and conduct further analyses on three frequently used databases.

FLICKR-AES [25] database consists of 210 users and about
40,000 images. In this work, 173 users make up the training set and
the rest 37 users make up the test set for PIAA task. The number of
images annotated by test users ranges from 105 to 171.

AADB [13] database contains almost 10, 000 images rated by 190
users and each image is rated by 5 users. Except aesthetic scores,
11 aesthetic attributes are also provided for each image, which
have been proved to be useful when analyzing different aesthetic
preferences. Similarly, we spare 68 users with as training users and
the rest 22 users for test. The number of images rated by test users
ranges from 110 to 190.

REAL-CUR [25] database is a relatively smaller database with 14
users’ albums and their rated images. The number of images rated
by the test users is around 200. Since REAL-CUR is constructed
by users’ real photo albums, it can simulate realistic application
settings.

4.2 Mythology Details

The proposed TAPP-PIAA consists of four steps: feature extraction,
graph construction, transductive aesthetic preference propagation
and loss computation. First of all, following [25, 36], we initialize our
backbones by parameters pre-trained on ImageNet [5]. In this work,
we adopt the meta-learning framework to train our model, which
mainly focuses on learning task adaptation knowledge. As a result,
the learning algorithm may fail to learn fundamental aesthetic
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knowledge. To tackle this limitation, we follow [33] and further
pre-train the embedding network ¥ with a supervised regression
task on all users’ mean opinion scores. Note that the GIAA pre-
training has no risk of personalized information leakage for GIAA
is invariant with PIAA. Meanwhile, this is also in line with realistic
settings where generic aesthetic information is available. After the
GIAA pre-training, our model is able to extract generic aesthetic
representations effectively.

Then, following the paradigm of meta-learning, our model is
meta-trained across many meta-tasks. Since the amount of sam-
ples rated by some training users are insufficient, which may cause
disturbances during training process. In this work, we choose train-
ing users with sufficient samples for meta-training. Specifically, we
choose 111 and 68 training users for FLICKR-AES and AADB respec-
tively. Under the meta-training framework with selected training
users, our model is forced to learn to propagate personalized aes-
thetic preferences across various users.

In this work, we adopt the Spearman Rank-Order Correlation
Coefficient (SROCC) [21] as our main evaluation criterion. Denote
the difference value between the prediction and ground-truth of the
i-th query sample as d;. The SROCC index between M predictions
and ground-truth labels is defined as:

M g2
srocc =1 Sz (10)
M(M?2 -1)
which ranges from -1 to 1 and higher SROCC represents higher
correlation between predictions and ground-truth labels.

4.3 Implementation Details

In this work, we implement our method under PyTorch [23] frame-
work and optimize it with an Adam [12] optimizer. For feature
embedding, we use two deep neural networks as backbone struc-
tures: ResNet-18 and ResNet-50 [10], respectively. Specially, after
the last convolutional block of the backbone, we add an adaptive
average pooling layer to squeeze the spatial size of the output fea-
tures to 1 X 1. Next, we will state the settings of hyper-parameters
used in this work. For the GIAA pre-training, we set the initial
learning rate to 1le — 4 and decay it by 0.9 after each epoch before
convergence. For the baseline Base-PIAA, we fine-tune the GIAA
prior model by replacing its last FC layer on personal data 20 times
with learning rate 1e — 5. Then, for meta-training on FLICKR-AES
and AADB, we randomly choose 100 training images and 40 test
images of each training user to construct a meta-task. Since the
backbone is pre-trained, we set the initial learning rate of meta-
training to 5e — 6 and decay it by 0.9 after each epoch. Besides, the
hyper-parameter o for graph construction in Eq. 3 is predefined
to 0? = 0.05. Moreover, the value of nearest neighbors k in Eq. 3
has a significant influence on model’s performance, so we report
the results of k=30 for 10-shot and k=50 for 100-shot PIAA task
according to the investigation in Subsection 5. Finally, during meta-
test phase, we set the number of images in support set to 10 for
10-shot tasks and 100 for 100-shot tasks. Note that the remaining
images of each test user are collected in query set. In order to avoid
the random errors, we sample on each test user’s data 50 times to
construct different meta-tasks; for each database, we evaluate our
method on all test users 20 times and report the mean results with
standard deviation.
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Table 1: Experimental results on FLICKR-AES. We report the
mean results with standard deviations.

Model SROCC

10-shot 100-shot
FPMF(only attribute) [22] 0.511+0.004 0.5160.003
FPMF(only content) [22] 0.512+0.002 0.5160.010
FPMF(content& attribute) [22]  0.513x0.003 0.524:0.007
PAM(only attribute) [25] 0.518+0.003 0.539+0.013
PAM(only content) [25] 0.515+0.004 0.535+0.017
PAM(content& attribute) [25] 0.520+0.003 0.553£0.012
USAR_PPR [20] 0.521+0.002 0.544+0.007
USAR_PAD [20] 0.520+0.003 0.537+0.003
USAR_PPR& PAD [20] 0.525+0.004 0.552+0.015
PA-TAA [15] 0.543+0.003 0.639+0.011
BA-PIAA [36] 0.524+0.004 0.583+0.014
PIAA(MAML) [36] 0.520+0.005 0.569+0.010
PIAA(Reptile) [36] 0.529+0.006 0.598+0.015
BLG-PIAA [36] 0.561+0.004 0.669+0.013
Base-PIAA (Ours) 0.529+0.006 0.585+0.012
Inductive-PIAA (Ours) 0.560+0.006 0.661+0.013
TAPP-PIAA (Ours) 0.591x0.007 0.685x0.012

4.4 Experimental Results

In this subsection, we evaluate our proposed method on three bench-
mark databases: FLICKR-AES, AADB and REAL-CUR.

1) Experimental results on FLICKR-AES: We compare our pro-
posed method with state-of-the-art PIAA methods on FLICKR-AES.
As is shown in Table 1, on FLICKR-AES, our TAPP-PIAA outper-
forms the state-of-the-art method BLG-PIAA [36] by 0.03 and 0.016
under 10-shot and 100-shot tasks, respectively. When compared
the baseline model Base-PIAA, our TAPP-PIAA achieves 0.062 and
0.1 improvements on 10-shot and 100-shot PIAA tasks respectively.
This indicates the effectiveness of our meta learning-based trans-
ductive aesthetic preference propagation algorithm which makes
use of both labeled and unlabeled data. Moreover, when compared
with the inductive learning method on PIAA task: Inductive-PIAA,
our TAPP-PIAA achieves 0.031 and 0.024 improvements under both
settings. This further demonstrates the advantage of transductive
inference, which first-time makes use of both labeled and unlabeled
data of each user in PIAA task.

2) Experimental results on AADB: As is shown in Table 2, our
method can also achieve the state-of-the-art performance with
0.037 and 0.067 improvements on AADB database. This further
demonstrates the superiority of our transductive aesthetic prefer-
ence propagation algorithm in PIAA task. Besides, when compared
with Inductive-PIAA based on inductive reasoning, our TAPP-PIAA
achieves 0.01 and 0.047 improvements on two PIAA tasks, respec-
tively.

3) Experimental results of cross-database evaluations: Under
the setting of realistic applications, we expect a PIAA model can
effectively generalize to various users. Therefore, we conduct a
cross-database evaluation by meta-training and meta-testing on
different databases. Specifically, we utilize the TAPP-PIAA model
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Table 2: Experimental results on AADB. We report the mean
results with standard deviations.

Model SROCC

10-shot 100-shot
BA-PIAA [36] 0.450+0.001 0.513+0.005
BLG-PIAA [36] 0.497+0.003 0.545+0.007
Inductive-PIAA (Ours)  0.524+0.003 0.565+0.006
TAPP-PIAA (Ours) 0.534+0.004 0.612:x0.007

Table 3: Experimental results of TAPP-PIAA under the cross-
database setting on 100-shot PIAA task.

Training Database Test Database
FLICKR-AES AADB REAL-CUR

FLICKR-AES 0.685 0.540 0.580

AADB 0.615 0.612 0.542

meta-trained on FLICKR-AES and AADB to predict the personalized
aesthetic preferences of test users in three databases. We report
the results in Table 3. From the results on large-scale databases
FLICKR-AES and AADB, we can observe that the two models meta-
trained on different databases both achieve better performances
when meta-tested on FLICKR-AES. This indicates the test users of
FLICKR-AES may give more accurate PIAA annotations, so models
can learn their aesthetic preferences more easily. For REAL-CUR,
the model meta-trained on FLICKR-AES outperforms the model
meta-trained on AADB with 0.038 improvement. This indicates that
the model trained on FLICKR-AES has a stronger generalization
ability than the one trained on AADB.

5 ABLATION STUDY
5.1 Backbone Structure

According to previous researches, the effectiveness of deep metric-
learning highly depends on the quality of representation learning
[4]. Therefore, in this subsection, we propose to investigate the
influence of different backbone structures of 4. As is shown in
Table 4, we choose two widely used ResNet-18 and ResNet-50 [10]
for backbone evaluation. We can observe that the performances on
100-shot PIAA task vary with different backbone structures. We can
further conclude that a deeper embedding network with a stronger
representation ability can lead to a higher performance in PIAA
task. Therefore, we report the other experimental results based on
ResNet-50 in this work.

5.2 Metric Function

In this subsection, we explore the influence of different metric func-
tions for constructing the undirected nearest neighbor graph. As
is introduced in Subsection 3.4, we propose to spread aesthetic
preferences through a graph structure. Therefore, the way of graph
construction is important to the quality of knowledge propagation,
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Figure 3: Visualization of 37 test users from FLICKR-AES under the setting of 100-shot PIAA task. The blue, yellow and red
bars represent the SROCC values of the baseline Base-PIAA, TAPP-PIAA without meta-training and TAPP-PIAA, respectively.

Table 4: Comparisons of different backbone structures on Table 5: Comparison of different metric functions for graph
100-shot PIAA task. construction on 100-shot PIAA task.
Backbone FLICKR-AES AADB Metric FLICKR-AES AADB
SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
ResNet-18 0.641 0.656 0.573 0.591 Euclidean 0.655 0.662 0.584 0.601
ResNet-50 0.685 0.704 0.612 0.627 Cosine 0.685 0.704 0.612 0.627
and thus can influence algorithm performance. Since a graph struc- of three methods (i.e., Base-PIAA, TAPP-PIAA w/o meta and TAPP-
ture is mainly determined by its adjacency matrix (Eq. 3), which PIAA) on 37 test users from FLICKR-AES under the setting of 100-
is computed with Gaussian function and an alternative similarity shot PIAA task. We observe that TAPP-PIAA (red) achieves the

function. We investigate different metric functions for computing
the adjacency matrix. Here, we choose the Cosine similarity and
the Euclidean distance for comparison. Note that we negate the Eu-
clidean distance to make it consistent with a similarity. Specifically,

best performance on all test users. Besides, we can see that TAPP-
PIAA w/o meta (yellow) outperforms our baseline model Base-PIAA
(blue) on the vast majority of test users. This indicates that with
the same pre-trained GIAA prior representation, our proposed
we utilize the normalized inner product as Cosine similarity, which TAPP-PIAA algorithm can learn individual aesthetic taste better
is defined in Eq. 3. Then, to construct the Euclidean distance-based than the baseline method based on fine-tuning. Moreover, we can
graph, we remove the l;-normalization process and replace the also observe that TAPP-PIAA (red) outperforms TAPP-PIAA w/o

inner product by a [ norm: meta (yellow) on all test users. This observation further proves the

(1%, %5]|2 effectiveness of the meta-learning framework in PIAA task, which
w =1 (= 202 ) ifi# j AK€ Ni(%)) (11) can enhance the learning algorithm’s generalization ability when
" 0 otherwise ’ facing unseen users.
i,j € [1, N+ M], where N + M is the number of image features in 5.4 Value of k

X. Note that £; is the i-th element of feature set X and N (%5) is
the set of the top k nearest neighbors of x; in X. Besides, o is a
predefined scale parameter for the Gaussian function and we follow
[29] to set 0% = 0.05. As is shown in Table 5, the performances
on two databases vary with different metric functions and Cosine

In this subsection, we investigate the impact of k (in Eq. 3) on the
performance of TAPP-PIAA. Specifically, the value of k nearest
neighbors could influence the graph structure [29] and further
affect the aesthetic knowledge propagation. In order to dig out
the relationship between k and PIAA performance, we present the
similarity outperforms the Euclidean distance. Therefore, we report experimental results of TAPP-PIAA based on different k values
the other experimental results based on the Cosine similarity in on two databases. As is shown in Fig. 4, the value of k has a mild

this paper. influence on PIAA results, which indicates that we should choose a

L. . L. proper k value for specific PIAA task. From the line chart we can
5.3 Individual Visualization observe that the results of k=30 and k=50 outperform the others
Previous analyses mainly focus on the average performance on a on 10-shot and 100-shot PIAA tasks, respectively. Therefore, we set
batch of test users, in this subsection, we delve into the performance k=30 for 10-shot tasks and k=50 for 100-shot tasks when reporting
of individual user. As is shown in Fig. 3, we present the performance the other results in this paper.
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Figure 4: Experimental results with different k values.

6 DISCUSSION

6.1 Regression or Classification

In this paper, we introduce transductive label propagation mech-
anism into PIAA task for the first time, while it is often used for
classification tasks [14, 18, 37]. In fact, PIAA task is different from
classification tasks from the following aspects. First, in classification
tasks, the label of each image is inherently fixed based on its objec-
tive properties, such as semantic. However, in PIAA task, the label
of each image is assigned according to users’ subjective preferences,
which means an image could be annotated with different labels
by different users. Second, in classification tasks, there are clear
classification boundaries between different categories. However,
in PIAA task, there is no clear boundary among labels (such as
score 4 and score 5) and aesthetic features with different labels are
highly correlated. Based on the above analyses, directly applying
classification-based label propagation strategy with a classification
loss into PIAA task is inappropriate. Therefore, in this paper, we
modify the traditional classification-based label propagation (dis-
crete labels) to a regression-based one (continuous label) with a
MSE loss. To prove the above points, we compare the results of
our regression-based TAPP-PIAA with classification-based TAPP-
PIAA* in Table 6. We can observe that TAPP-PIAA outperforms
TAPP-PIAA* on both FLICKR-AES and AADB and this indicates
that the regression-based propagation strategy is more suitable for
PIAA task.

6.2 Transductive Propagation Strategy

Except the propagation formula introduced in Subsection 3.5, we
also explore another widely-adopted transductive propagation strat-
egy [11, 14, 18] into PIAA task. Similarly, we denote the label matrix
at t-th iteration as ! € RIN*M)X1 and define the iterative formula
of this propagation strategy as:

= 0Aft + (1 - )Y, (12)

where A is the normalized adjacency matrix and Y is the initial label
matrix defined by Eq. 4. Note that a € (0, 1) controls the amount
of transferred information from support labels. Here, we follow
[11, 14, 18] and set & to 0.99. Similarly, the above formula can also
lead to a closed-form solution [35] for f*:

ff=1-a)-ad)ly, (13)

where f* is the predicted label matrix of all support and query
samples. Similar to Eq. 8, we use Eq. 13 to directly calculate the
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Table 6: Comparison between classification-based propa-
gation and regression-based propagation. Note that TAPP-
PIAA* is implemented under classification-based propaga-
tion with cross-entropy loss.

Method FLICKR-AES AADB
10-shot 100-shot 10-shot 100-shot

TAPP-PIAA* 0.559 0.655 0.515 0.583

TAPP-PIAA 0.591 0.685 0.534 0.612

Table 7: Comparison between different transductive prop-
agation strategies. Note that TAPP-PIAA" is implemented
according to Eq. 13.

Method FLICKR-AES AADB
10-shot 100-shot 10-shot 100-shot

TAPP-PIAAT 0.565 0.662 0.520 0.576

TAPP-PIAA 0.591 0.685 0.534 0.612

propagation results in practice. As is shown in Table 7, we compare
the experimental results of two propagation strategies. We can
observe that our TAPP-PIAA outperforms TAPP-PIAAT by 0.014
to 0.036 on FLICKR-AES and AADB. This reveals the fact that the
direct label recovery can better maintain the stability of the initial
label information than using a control parameter o in PIAA task.

7 CONCLUSION

In this work, we first-time propose using meta learning-based trans-
ductive label propagation algorithm into PIAA task and have pro-
posed an algorithm named TAPP-PIAA for utilizing the potential
value of unlabeled data when inferring personalized aesthetic pref-
erence. Further, we can also substitute the fine-tuning operation
when deploying on personal data via personalized aesthetic prefer-
ence embedding and graph inference. Here, to better fit the charac-
teristics of PIAA task, we extend the existing classification-based
propagation strategy into a regression-based one to learn to propa-
gate aesthetic preferences by optimizing a standard mean square
error loss. We also report the proposed algorithm performance on
different PIAA benchmark databases and conduct cross-database
validation. We further give explanations and analyses on regres-
sion or classification setting, propagation strategy, influence of
hyper-parameter selection, backbone and metric function. Experi-
mental results indicate that the proposed method can outperform
the state-of-the-art methods.
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